MATHEMATICS - CET 2024 - VERSION CODE - B-2 KEYS

1. Corner points of the feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and $(0,5)$. Let $z=4 x+6 y$ be the objective function. The minimum value of z occurs at
(A) Only $(0,2)$
(B) Only $(3,0)$
(C) The mid-point of the line segment joining the points $(0,2)$ and $(3,0)$
(D) Any point of the line segment joining the points $(0,2)$ and $(3,0)$

Ans (D)
$Z=4 x-6 y$

Corner points	Corresponding value \mathbf{Z}
$\mathrm{A}(0,2)$	12
$\mathrm{~B}(3,0)$	12
$\mathrm{C}(6,0)$	24
$\mathrm{D}(6,8)$	72
$\mathrm{E}(0,5)$	30

2. A die is thrown 10 times. The probability that an odd number will come up at least once is
(A) $\frac{11}{1024}$
(B) $\frac{1013}{1024}$
(C) $\frac{1023}{1024}$
(D) $\frac{1}{1024}$

Ans (C)
$\mathrm{P}(\mathrm{X}=\mathrm{r})={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{q}^{\mathrm{n}-\mathrm{r}} \mathrm{p}^{\mathrm{r}}$
$\mathrm{P}=\frac{1}{2}$
$\mathrm{q}=\frac{1}{2}$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
$\mathrm{P}(\mathrm{X} \geq 1)=1-\mathrm{P}(\mathrm{x}<1)$

$$
=1-\mathrm{P}(\mathrm{X}=0)
$$

$$
=1-{ }^{10} \mathrm{C}_{0}\left(\frac{1}{2}\right)^{10}
$$

$$
=1-\frac{1}{1024}
$$

$$
=\frac{1023}{1024}
$$

3. A random variable X has the following probability distribution:

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{25}{36}$	k	$\frac{1}{36}$

If the mean of the random variable X is $\frac{1}{3}$, then the variance is
(A) $\frac{1}{18}$
(B) $\frac{5}{18}$
(C) $\frac{7}{18}$
(D) $\frac{11}{18}$

Ans (B)
$\frac{25}{36}+\mathrm{k}+\frac{1}{36}=1$
$\mathrm{k}=1-\frac{26}{36}=\frac{10}{36}$
$\mu=0+\frac{10}{36}+\frac{2}{36}=\frac{13}{36}=\frac{1}{3}$
$\operatorname{Var}=0+\frac{10}{36}+\frac{4}{36}-\left(\frac{13}{36}\right)^{2}$
$=\frac{14}{36}-\frac{1}{9}$
$=\frac{14-4}{36}=\frac{10}{36}=\frac{5}{18}$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
4. If a random variable X follows the binomial distribution with parameters $n=5, p$ and $\mathrm{P}(\mathrm{X}=2)=9 \mathrm{P}(\mathrm{X}=3)$, then p is equal to
(A) 10
(B) $\frac{1}{10}$
(C) 5
(D) $\frac{1}{5}$

Ans (B)
$\mathrm{P}(\mathrm{X}=2)=9 \mathrm{P}(\mathrm{X}=3)$
$\mathrm{q}=9 \mathrm{p}$
$1-p=9 p$
$1=10 \mathrm{p}$
$\mathrm{p}=\frac{1}{10}$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
5. Two finite sets have m and n elements respectively. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are
(A) 7,6
(B) 5,1
(C) 6,3
(D) 8,7

Ans (C)
$2^{\mathrm{m}}=56+2^{\mathrm{n}}$
By inspection $\mathrm{m}=6, \mathrm{n}=3$
6. If $[x]^{2}-5[x]+6=0$, where $[x]$ denotes the greatest integer function, then
(A) $x \in[3,4]$
(B) $x \in[2,4)$
(C) $x \in[2,3]$
(D) $x \in(2,3]$

Ans (B)
$\mathrm{t}=[\mathrm{x}]$
$\mathrm{t}^{2}-5 \mathrm{t}+6=0$
$(\mathrm{t}-2)(\mathrm{t}-3)=0$
$t=2$ or $t=3$
$[\mathrm{x}]=2 \quad[\mathrm{x}]=3$
$x \in[2,4)$
7. If in two circles, arcs of the same length subtend angles 30° and 78° at the centre, then the ratio of their radii is
(A) $\frac{5}{13}$
(B) $\frac{13}{5}$
(C) $\frac{13}{4}$
(D) $\frac{4}{13}$

Ans（B）

$l_{1}=\mathrm{r}_{1} \theta_{1}$

$$
l_{2}=\mathrm{r}_{2} \theta_{2}
$$

$l_{1}=l_{2} \Rightarrow \mathrm{r}_{1} \theta_{1}=\mathrm{r}_{2} \theta_{2}$
$\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\theta_{2}}{\theta_{1}}=\frac{78}{30}=\frac{26}{10}=\frac{13}{5}$
8．If $\Delta \mathrm{ABC}$ is right angled at C ，then the value of $\tan \mathrm{A}+\tan \mathrm{B}$ is
（A）$a+b$
（B）$\frac{a^{2}}{b c}$
（C）$\frac{c^{2}}{a b}$
（D）$\frac{b^{2}}{a c}$

Ans（C）

Given， $\mathrm{A}+\mathrm{B}=90^{\circ}$

$$
\begin{aligned}
\tan A+\tan B & =\frac{a}{b}+\frac{b}{a} \\
& =\frac{a^{2}+b^{2}}{a b} \\
& =\frac{c^{2}}{a b}
\end{aligned}
$$

9．The real value of＇α＇for which $\frac{1-\mathrm{i} \sin \alpha}{1+2 \mathrm{i} \sin \alpha}$ is purely real is
（A）$(\mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{N}$
（B）$(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{N}$
（C）$n \pi, n \in \mathbb{N}$
（D）$(2 \mathrm{n}-1) \frac{\pi}{2}, \mathrm{n} \in \mathbb{N}$

Ans（C）

$$
\begin{aligned}
Z & =\frac{1-i \sin \alpha}{1+2 i \sin \alpha} \\
& =\frac{(1-i \sin \alpha)(1-2 i \sin \alpha)}{1+4 \sin ^{2} \alpha}
\end{aligned}
$$

$\operatorname{Im}(Z)=0$
$-2 \sin \alpha-\sin \alpha=0$
$\sin \alpha=0$
$\alpha=\mathrm{n} \pi, \mathrm{n} \in \mathrm{Z}$
10．The length of a rectangle is five times the breadth．If the minimum perimeter of the rectangle is 180 cm ， then
（A）Breadth $\leq 15 \mathrm{~cm}$
（B）Breadth $\geq 15 \mathrm{~cm}$
（C）Length $\leq 15 \mathrm{~cm}$
（D）Length $=15 \mathrm{~cm}$

Ans（B）
$l=5 \mathrm{~b}$
$2[l+\mathrm{b}] \geq 180$
$l+\mathrm{b} \geq 90$
$6 \mathrm{~b} \geq 90$
$b \geq 15$
Strategic Academic Alliance with
11. The value of ${ }^{49} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{4}$ is
(A) ${ }^{50} \mathrm{C}_{4}$
(B) ${ }^{50} \mathrm{C}_{3}$
(C) ${ }^{50} \mathrm{C}_{2}$
(D) ${ }^{50} \mathrm{C}_{1}$

Ans (A)

$$
\begin{aligned}
{ }^{49} \mathrm{C}_{3} & +{ }^{48} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{3}+{ }^{45} \mathrm{C}_{4}\left[\because{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}={ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}}\right] \\
& ={ }^{49} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{3}+{ }^{46} \mathrm{C}_{4} \\
& ={ }^{49} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{3}+{ }^{47} \mathrm{C}_{4} \\
& ={ }^{49} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{3}+{ }^{48} \mathrm{C}_{4} \\
& ={ }^{49} \mathrm{C}_{3}+{ }^{49} \mathrm{C}_{4} \\
& ={ }^{50} \mathrm{C}_{4}
\end{aligned}
$$

12. In the expansion of $(1+x)^{n}$
$\frac{\mathrm{C}_{1}}{\mathrm{C}_{0}}+2 \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}+3 \frac{\mathrm{C}_{3}}{\mathrm{C}_{2}}+\ldots \ldots+\mathrm{n} \frac{\mathrm{C}_{\mathrm{n}}}{\mathrm{C}_{\mathrm{n}-1}}$ is equal to
(A) $\frac{n(n+1)}{2}$
(B) $\frac{\mathrm{n}}{2}$
(C) $\frac{\mathrm{n}+1}{2}$
(D) $3 n(n+1)$

Ans (A)
Put $\mathrm{n}=2$

$$
\begin{aligned}
\frac{{ }^{2} \mathrm{C}_{1}}{{ }^{2} \mathrm{C}_{0}} & +2 \frac{{ }^{2} \mathrm{C}_{2}}{{ }^{2} \mathrm{C}_{1}} \\
= & \frac{2}{1}+2 \frac{1}{2} \\
= & 2+1=3
\end{aligned}
$$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024

In option (A) $\frac{2(3)}{2}=3$ or used $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$
13. If S_{n} stands for sum to n-terms of a G.P. with ' a ' as the first term and ' r ' as the common ratio then $\mathrm{S}_{\mathrm{n}}: \mathrm{S}_{2 \mathrm{n}}$ is
(A) $r^{n}+1$
(B) $\frac{1}{\mathrm{r}^{\mathrm{n}}+1}$
(C) $r^{n}-1$
(D) $\frac{1}{\mathrm{r}^{\mathrm{n}}-1}$

Ans (B)
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$S_{2 n}=\frac{a\left(r^{2 n}-1\right)}{r-1}$
$\frac{S_{n}}{S_{2 n}}=\frac{\frac{a\left(r^{n}-1\right)}{r-1}}{\frac{a\left(\left(r^{n}\right)^{2}-1\right)}{r-1}}=\frac{r^{n}-1}{\left(r^{n}-1\right)\left(r^{n}+1\right)}$

$$
=\frac{1}{\mathrm{r}^{\mathrm{n}}+1}
$$

14. If A.M. and G.M. of roots of a quadratic equation are 5 and 4 respectively, then the quadratic equation is
(A) $x^{2}-10 x-16=0$
(B) $x^{2}+10 x+16=0$
(C) $x^{2}+10 x-16=0$
(D) $x^{2}-10 x+16=0$

Ans (D)

$$
\frac{a+b}{2}=5 \quad \sqrt{a b}=4
$$

$a+b=10 \quad a b=16$
$x^{2}-(a+b) x+a b=0$
$x^{2}-10 x+16=0$
15. The angle between the line $x+y=3$ and the line joining the points $(1,1)$ and $(-3,4)$ is
(A) $\tan ^{-1}(7)$
(B) $\tan ^{-1}\left(-\frac{1}{7}\right)$
(C) $\tan ^{-1}\left(\frac{1}{7}\right)$
(D) $\tan ^{-1}\left(\frac{2}{7}\right)$

Ans (C)
$x+y=3$
$y=-x+3$
$y=m x+c$
$\mathrm{m}_{1}=-1$
$(1,1),(-3,4)$
$m_{2}=\frac{4-1}{-3-1}=\frac{3}{-4}$
$\tan \theta=\left|\frac{\mathrm{m}_{2}-\mathrm{m}_{1}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|$
$=\left|\frac{\frac{-3}{4}+1}{1+(-1)\left(\frac{-3}{4}\right)}\right|$
$=\left|\frac{\frac{1}{4}}{\frac{7}{4}}\right|$
$\theta=\tan ^{-1}\left(\frac{1}{7}\right)$
16. The equation of parabola whose focus is $(6,0)$ and directrix is $x=-6$ is
(A) $y^{2}=24 x$
(B) $y^{2}=-24 x$
(C) $x^{2}=24 y$
(D) $x^{2}=-24 y$

Ans (A)
$\mathrm{x}=\mathrm{a}=6$
$y^{2}=4 a x$
$y^{2}=4(6) x$
$y^{2}=24 \mathrm{x}$

17. $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}$ is equal to
(A) 2
(B) $\sqrt{2}$
(C) $\frac{1}{2}$
(D) $\frac{1}{\sqrt{2}}$

Ans (C)
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2} \cos x-1}{\cot x-1}=\frac{0}{0}$

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sqrt{2}(-\sin x)-0}{-\operatorname{cosec}^{2} x} & =\frac{-\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)}{-(\sqrt{2})^{2}} \\
& =\frac{1}{2}
\end{aligned}
$$

18. The negation of the statement
"For every real number $x ; x^{2}+5$ is positive"
is
(A) For every real number $x ; x^{2}+5$ is not positive.
(B) For every real number $x ; x^{2}+5$ is negative.
(C) Three exists at least one real number x such that $x^{2}+5$ is not positive.
(D) There exists at least one real number x such that $x^{2}+5$ is positive.

Ans (C)
19. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e be the observations with mean m and standard deviation S . standard deviation of the observations $a+k, b+k, c+k, d+k$ and $e+k$ is
(A) kS
(B) $\mathrm{S}+\mathrm{k}$
(C) $\frac{\mathrm{S}}{\mathrm{k}}$
(D) S

Ans (D)
20. Let $f: R \rightarrow R$ be given by $f(x)=\tan x$. Then $f^{-1}(1)$ is
(A) $\frac{\pi}{4}$
(B) $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
(C) $\frac{\pi}{3}$
(D) $\left\{n \pi+\frac{\pi}{3}: n \in Z\right\}$

Ans (B)
$\mathrm{f}^{-1}(1)=\mathrm{a}$
$\Rightarrow 1=\mathrm{f}(\mathrm{a})$
$\Rightarrow 1=\tan \mathrm{a}$
$\Rightarrow \mathrm{a}=\mathrm{n} \pi+\frac{\pi}{4} \mathrm{n} \in \mathrm{Z}$
21. Let $f: R \rightarrow R$ be defined by $f(x)=x^{2}+1$. Then the pre images of 17 and -3 respective are
(A) $\phi,\{4,-4\}$
(B) $\{3,-3\}, \phi$
(C) $\{4,-4\}, \phi$
(D) $\{4,-4\},\{2,-2\}$

Ans (C)
$\mathrm{f}(\mathrm{x})=17$
$x^{2}+1=17$
$\mathrm{x}^{2}=16$
$\mathrm{x}= \pm 4$
$\mathrm{f}(\mathrm{x})=-3$
$\mathrm{x}^{2}+1=-3$
$x^{2}=-4$
$\mathrm{x}=\sqrt{-4} \notin \mathrm{R}$
22. Let $(\mathrm{gof})(\mathrm{x})=\sin \mathrm{x}$ and $(\mathrm{fog})(\mathrm{x})=(\sin \sqrt{\mathrm{x}})^{2}$. Then
(A) $f(x)=\sin ^{2} x, g(x)=x$
(B) $f(x)=\sin \sqrt{x}, g(x)=\sqrt{x}$
(C) $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
(D) $f(x)=\sin \sqrt{x}, g(x)=x^{2}$

Ans (C)

$$
\begin{aligned}
\mathrm{g}[\mathrm{f}(\mathrm{x})] & =\sin \mathrm{x} \\
& =\sqrt{\sin ^{2}(\mathrm{x})} \\
\mathrm{f}[\mathrm{~g}(\mathrm{x})] & =(\sin \sqrt{\mathrm{x}})^{2} \\
& =\sin ^{2}(\sqrt{\mathrm{x}})
\end{aligned}
$$

23. Let $\mathrm{A}=\{2,3,4,5, \ldots \ldots .16,17,18\}$. Let R be the relation on the set A of ordered pairs of positive integers defined by (a, b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ if and only if $\mathrm{ad}=\mathrm{bc}$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})$ in $\mathrm{A} \times \mathrm{A}$. Then the number of ordered pairs of the equivalence class of $(3,2)$ is
(A) 4
(B) 5
(C) 6
(D) 7

Ans (C)
Let $(3,2) R(x, y)$
$\Rightarrow 3 y=2 x \Rightarrow y=\frac{2 x}{3}$
$\Rightarrow \mathrm{x}=3, \mathrm{y}=2$
$x=6, y=4$
$\mathrm{x}=9, \mathrm{y}=6$
$\mathrm{x}=12, \mathrm{y}=3$
$\mathrm{x}=15, \mathrm{y}=10$
$\mathrm{x}=18, \mathrm{y}=12$
24. If $\cos ^{-1} x+\cos ^{-1} y+\cos ^{-1} z=3 \pi$, then $x(y+z)+y(z+x)+z(x+y)$ equals to
(A) 0
(B) 1
(C) 6
(D) 12

Ans (C)

$$
\begin{aligned}
& \cos ^{-1} x=\pi \Rightarrow x=-1 \\
& \cos ^{-1} y=\pi \Rightarrow y=-1 \\
& \cos ^{-1} z=\pi \Rightarrow z=-1 \\
& x(y+z)+y(z+x)+z(x+y) \\
& \quad=-1(-1-1)-1(-1-1)-1(-1-1) \\
& \quad=6
\end{aligned}
$$

25. If $2 \sin ^{-1} x-3 \cos ^{-1} x=4, x \in[-1,1]$ then $2 \sin ^{-1} x+3 \cos ^{-1} x$ is equal to
(A) $\frac{4-6 \pi}{5}$
(B) $\frac{6 \pi-4}{5}$
(C) $\frac{3 \pi}{2}$
(D) 0

Ans (B)
$2 \sin ^{-1} x-3 \cos ^{-1} x=4$

$$
\begin{aligned}
& 2\left[\frac{\pi}{2}-\cos ^{-1} \mathrm{x}\right]-3 \cos ^{-1} \mathrm{x}=4 \\
& \Rightarrow \pi-2 \cos ^{-1} \mathrm{x}-3 \cos ^{-1} \mathrm{x}=4 \\
& \begin{aligned}
& \Rightarrow \pi-5 \cos ^{-1} \mathrm{x}=4 \Rightarrow \cos ^{-1} \mathrm{x}=\frac{\pi-4}{5} \\
& \begin{aligned}
\therefore 2 \sin ^{-1} \mathrm{x}+3 \cos ^{-1} \mathrm{x} & =2 \sin ^{-1} \mathrm{x}+2 \cos ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x} \\
& =2\left[\sin ^{-1} \mathrm{x}+\cos ^{-1} \mathrm{x}\right]+\cos ^{-1} \mathrm{x} \\
& =2\left[\frac{\pi}{2}\right]+\frac{\pi-4}{5}=\frac{6 \pi-4}{5}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

26. If A is a square matrix such that $A^{2}=A$, then $(I+A)^{3}$ is equal to
(A) $7 \mathrm{~A}-\mathrm{I}$
(B) 7 A
(C) $7 \mathrm{~A}+\mathrm{I}$
(D) $\mathrm{I}-7 \mathrm{~A}$

Ans (C)

$$
\begin{aligned}
(I+A)^{3} & =(I+A)(I+A)(I+A) \\
& =\left(I^{2}+I A+A I+A^{2}\right)(I+A) \\
& =\left(I+2 A+A^{2}\right)(I+A) \\
& =(I+3 A)(I+A)\left[\because A^{2}=A\right] \\
& =I^{2}+I A+3 A I+3 A^{2} \\
& =I+4 A+3 A^{2} \\
& =I+7 A\left[\because A^{2}=A\right]
\end{aligned}
$$

27. If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then A^{10} is equal to
(A) $2^{8} \mathrm{~A}$
(B) $2^{9} \mathrm{~A}$
(C) $2^{10} \mathrm{~A}$
(D) $2^{11} \mathrm{~A}$

Ans (B)
$\mathrm{A}^{2}=\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$
$\mathrm{A}^{2}=2^{1}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
Also, $A^{3}=\left(\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right)$

$$
\mathrm{A}^{3}=2^{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

$\therefore \quad A^{10}=2^{9}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
28. If $f(x)=\left|\begin{array}{ccc}x-3 & 2 x^{2}-18 & 2 x^{3}-81 \\ x-5 & 2 x^{2}-50 & 4 x^{3}-500 \\ 1 & 2 & 3\end{array}\right|$, then $f(1) \cdot f(3)+f(3) \cdot f(5)+f(5) \cdot f(1)$ is
(A) -1
(B) 0
(C) 1
(D) 2

Ans 1217160 [None of the options Matches]
$f(1)=-1610$
$f(3)=-756$
$\mathrm{f}(5)=0$
Grace
29. If $\mathrm{P}=\left[\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right]$ is the adjoint of a 3×3 matrix A and $|\mathrm{A}|=4$, then α is equal to
(A) 4
(B) 5
(C) 11
(D) 0

Ans (C)
$|\operatorname{Adj} \mathrm{A}|=|\mathrm{A}|^{\mathrm{n}-1}$
$1(0)-\alpha(-2)+3(-2)=(4)^{2}$
$2 \alpha-6=16$
$2 \alpha=22$
$\alpha=11$
30. If $A=\left|\begin{array}{ll}x & 1 \\ 1 & x\end{array}\right|$ and $B=\left|\begin{array}{ccc}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{array}\right|$, then $\frac{d B}{d x}$ is
(A) 3 A
(B) $-3 B$
(C) $3 \mathrm{~B}+1$
(D) $1-3 \mathrm{~A}$

Ans (A)
$\mathrm{A}=\mathrm{x}^{2}-1$
$B=x\left(x^{2}-1\right)-1(x-1)+1(1-x)$
$=x^{3}-3 x+2$
$\frac{d B}{d x}=3 x^{2}-3$

$$
\begin{aligned}
& =3\left(\mathrm{x}^{2}-1\right) \\
& =3 \mathrm{~A}
\end{aligned}
$$

31. Let $f(x)=\left|\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right|$. Then $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=$
(A) -1
(B) 0
(C) 3
(D) 2

Ans (B)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\cos \mathrm{x}\left(-\mathrm{x}^{2}\right)-\mathrm{x}(0)+1(\mathrm{x} \sin \mathrm{x}) \\
& \begin{aligned}
\lim _{\mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}^{2}} & =\lim _{\mathrm{x} \rightarrow 0}\left[-\cos \mathrm{x}+\frac{\sin \mathrm{x}}{\mathrm{x}}\right] \\
& =-1+1 \\
& =0
\end{aligned}
\end{aligned}
$$

32. Which one of the following observations is correct for the features of logarithm function to any base $\mathrm{b}>1$?
(A) The domain of the logarithm function is R , the set of real numbers
(B) The range of the logarithm function is R^{+}, the set of all positive real numbers.
(C) The point $(1,0)$ is always on the graph of the logarithm function.
(D) The graph of the logarithm function is decreasing as we move from left to right.

Ans (C)

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
33. The function $f(x)=|\cos x|$ is
(A) everywhere continuous and differentiable
(B) everywhere continuous but not differentiable at odd multiples of $\frac{\pi}{2}$
(C) neither continuous not differentiable at $(2 n+1) \frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$
(D) not differentiable everywhere

Ans (B)
Standard result
34. If $y=2 x^{3 x}$, then $\frac{d y}{d x}$ at $x=1$ is
(A) 2
(B) 6
(C) 3
(D) 1

Ans (B)
$y=2(x)^{3 x}$
$\log y=\log 2+3 x \log x$
$\frac{1}{y} \frac{d y}{d x}=0+3(1)+3 \log x$
$\frac{d y}{d x}=y(3+3 \log x)$
at $\mathrm{x}=1$
$\frac{d y}{d x}=(2)(3+0)=6$
35. Let the function satisfy the equation $f(x+y)=f(x) f(y)$ for all $x, y \in R$, where $f(0) \neq 0$. If $f(5)=3$ and $f^{\prime}(0)=2$, then $f^{\prime}(5)$ is
(A) 6
(B) 0
(C) 5
(D) -6

Ans (A)

$$
\begin{aligned}
f^{\prime}(5) & =\lim _{x \rightarrow 0} \frac{f(x)-f(5)}{x-5} \\
& =\lim _{x \rightarrow 5} \frac{f(5+h)-f(5)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(5) f(h)-f(5)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(5)[f(h)-1]}{h-0} \\
& =\lim _{h \rightarrow 0} f(5) f^{\prime}(0) \\
& =(3)(2)=6
\end{aligned}
$$

36. The value of C in $(0,2)$ satisfying the mean value theorem for the function $f(x)=x(x-1)^{2}, x \in[0,2]$ is equal to
(A) $\frac{3}{4}$
(B) $\frac{4}{3}$
(C) $\frac{1}{3}$
(D) $\frac{2}{3}$

Ans (B)
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
$f(2)=2(2-1)^{2}=2$
$f(0)=0$

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =2 \mathrm{x}(\mathrm{x}-1)+(\mathrm{x}-1)^{2} \\
& =2 \mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}^{2}-2 \mathrm{x}+1 \\
& =3 \mathrm{x}^{2}-4 \mathrm{x}+1
\end{aligned}
$$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024

$$
f^{\prime}(c)=3 c^{2}-4 c+1
$$

$3 \mathrm{c}^{2}-4 \mathrm{c}+1=\frac{2-0}{2}=1$
$3 c^{2}-4 c=0$
$\mathrm{c}=\frac{4}{3}$
37. $\frac{\mathrm{d}}{\mathrm{dx}}\left[\cos ^{2}\left(\cot ^{-1} \sqrt{\frac{2+\mathrm{x}}{2-\mathrm{x}}}\right)\right]$ is
(A) $-\frac{3}{4}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$

Ans (D)
Put $x=2 \cos \theta \Rightarrow \cos \theta=\frac{x}{2} \Rightarrow \theta=\cos ^{-1} \frac{x}{2}$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dx}} & {\left[\cos ^{2}\left[\cot ^{-1} \sqrt{\frac{2+2 \cos \theta}{2-2 \cos \theta}}\right]\right] } \\
& =\frac{\mathrm{d}}{\mathrm{dx}}\left[\cos ^{2}\left[\cot ^{-1}\left(\cot \frac{\theta}{2}\right)\right]\right] \\
& =\frac{\mathrm{d}}{\mathrm{dx}}\left[\cos ^{2} \frac{\theta}{2}\right]=\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{1+\cos \theta}{2}\right] \\
& =\frac{\mathrm{d}}{\mathrm{dx}}\left[\frac{1+\frac{\mathrm{x}}{2}}{2}\right]=\frac{1}{4}
\end{aligned}
$$

38. For the function $f(x)=x^{3}-6 x^{2}+12 x-3$; $x=2$ is
(A) a point of minimum
(B) a point of inflexion (C) not a critical point
(D) a point of maximum

Ans (B)
$f^{\prime}(x)=3 x^{2}-12 x+12$
$f^{\prime \prime}(x)=6 x-12$
$f^{\prime \prime \prime}(x)=6$
$f^{\prime}(x)=0 \quad \Rightarrow 3 x^{2}-12 x+12=0$
$\Rightarrow x^{2}-4 x+4=0$
$\Rightarrow x=2$
at $\mathrm{x}=2, \mathrm{f}^{\prime \prime}(\mathrm{x})=0$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x}) \neq 0$
$\therefore \mathrm{x}=2$ is a point of inflection
39. The function $x^{x}, x>0$ is strictly increasing at
(A) $\forall x \in \mathbb{R}$
(B) $\mathrm{x}<\frac{1}{\mathrm{e}}$
(C) $\mathrm{x}>\frac{1}{\mathrm{e}}$
(D) $x<0$

Ans (C)
$y=f(x)=x^{x}$
$\log y=x \log x$
$\frac{1}{y} \frac{d y}{d x}=1+\log x$
$\frac{d y}{d x}=x^{x}(1+\log x)$

For strictly increasing $\frac{d y}{d x}>0$
$\Rightarrow(1+\log \mathrm{x})>0$
$\Rightarrow \log \mathrm{x}>-1$
$x>e^{-1}$
$x>\frac{1}{e}$
40. The maximum volume of the right circular cone with slant height 6 units is
(A) $4 \sqrt{3} \pi$ cubic units
(B) $16 \sqrt{3} \pi$ cubic units
(C) $3 \sqrt{3} \pi$ cubic units
(D) $6 \sqrt{3} \pi$ cubic units

Ans (B)
Volume $\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$
$h^{2}+\mathrm{r}^{2}=36 \Rightarrow \mathrm{r}^{2}=36-\mathrm{h}^{2}$
$\mathrm{V}=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}$
$\mathrm{V}=\frac{\pi}{3}\left(36-\mathrm{h}^{2}\right) \mathrm{h}=\frac{\pi}{3}\left(36 \mathrm{~h}-\mathrm{h}^{3}\right)$

$\frac{\mathrm{dV}}{\mathrm{dh}}=\frac{\pi}{3}\left(36-3 \mathrm{~h}^{2}\right)=0$
$3 h^{2}=36$
$h^{2}=12$

$$
\mathrm{r}^{2}=36-12=24
$$

$\mathrm{h}=\sqrt{12}$
$\Rightarrow \mathrm{r}=\sqrt{24}$
$\therefore \mathrm{V}=\frac{\pi}{3}(24) 2 \sqrt{3}=16 \pi \sqrt{3}$
41. If $f(x)=x e^{x(1-x)}$ then $f(x)$ is
(A) increasing in \mathbb{R}
(B) decreasing in \mathbb{R}
(C) decreasing in $\left[-\frac{1}{2}, 1\right]$
(D) increasing in $\left[-\frac{1}{2}, 1\right]$

Ans (D)
$f(x)=x e^{x(1-x)}$
$f^{\prime}(x)=e^{x(1-x)}+x^{x(1-x)}(1-2 x)$
$f^{\prime}(x)=0 \Rightarrow e^{x(1-x)}(1+x(1-2 x))=0$
$\Rightarrow \mathrm{e}^{\mathrm{x}(1-\mathrm{x})}\left(1+\mathrm{x}-2 \mathrm{x}^{2}\right)=0$
$\Rightarrow 2 \mathrm{x}^{2}-\mathrm{x}-1=0$
$\Rightarrow 2 \mathrm{x}^{2}-2 \mathrm{x}+\mathrm{x}-1=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}-1)+1(\mathrm{x}-1)=0$
$\Rightarrow \mathrm{x}=1,2 \mathrm{x}=-1 \mathrm{x}=\frac{-1}{2}$
$\mathrm{x}=2$
$\mathrm{f}^{\prime}(2)=2^{2(1-2)}(1+2-4)<0$

$\mathrm{x}=0$
$\mathrm{f}^{\prime}(0)=\mathrm{e}^{0(1-0)}(1+0-0)>0$
$x=-1 \quad f^{\prime}(-1)=e^{-1}(1+1)(1-1-2)<0$
$\mathrm{f}(\mathrm{x})$ is increasing on $\left[\frac{-1}{2}, 1\right]$
42. $\int \frac{\sin \mathrm{x}}{3+4 \cos ^{2} \mathrm{x}} d \mathrm{x}=$
(A) $-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C$
(B) $\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\cos x}{3}\right)+C$
(C) $\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{\cos x}{3}\right)+C$
(D) $-\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{3}\right)+C$

Ans (A)
$\int \frac{\sin x}{3+4 \cos ^{2} x} d x$
$\cos \mathrm{x}=\mathrm{t} \quad-\sin \mathrm{xdx}=\mathrm{dt}$
$\mathrm{I}=\int \frac{-\mathrm{dt}}{3+4 \mathrm{t}^{2}}=\frac{1}{4} \int \frac{\mathrm{dt}}{\frac{3}{4}+\mathrm{t}^{2}}$
$I=\frac{-1}{4} \int \frac{\mathrm{dt}}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\mathrm{t}^{2}}=\frac{-1}{4} \frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{\mathrm{t}}{\frac{\sqrt{3}}{2}}\right)+\mathrm{C}$
$I=\frac{2}{-4 \sqrt{3}} \tan ^{-1}\left(\frac{2 t}{\sqrt{3}}\right)+C$
$I=\frac{1}{-2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C$
43. $\int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cdot \cos ^{2} x d x=$
(A) $\pi-\frac{\pi^{2}}{3}$
(B) $2 \pi-\pi^{3}$
(C) $\pi-\frac{\pi^{3}}{2}$
(D) 0

Ans (D)
$I=\int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cos ^{2} x d x$
$f(x)=\left(1-x^{2}\right) \sin x \cos ^{2} x$
$f(-x)=\left(1-x^{2}\right) \sin (-x) \cos ^{2}(-x)$ $=-\left(1-x^{2}\right) \sin x \cos ^{2} x$

$$
=-\mathrm{f}(\mathrm{x})
$$

$\therefore \mathrm{f}(\mathrm{x})$ is odd function
$I=\int_{-\pi}^{\pi}\left(1-x^{2}\right) \sin x \cos ^{2} x d x=0$
44. $\int \frac{1}{x\left[6(\log x)^{2}+7 \log x+2\right]} d x=$
(A) $\frac{1}{2} \log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
(B) $\log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
(C) $\log \left|\frac{3 \log x+2}{2 \log x+1}\right|+C$
(D) $\frac{1}{2} \log \left|\frac{3 \log \mathrm{x}+2}{2 \log \mathrm{x}+1}\right|+\mathrm{C}$

Ans (B)
$I=\int \frac{1}{x\left[6(\log x)^{2}+7 \log x+2\right]} d x$
$\log \mathrm{x}=\mathrm{t} \Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
$I=\int \frac{d t}{\left(6 t^{2}+7 t+2\right)}$
$I=\int \frac{d t}{\left(6 t^{2}+4 t+3 t+2\right)}$
$I=\int \frac{d t}{2 t(3 t+2)+1(3 t+2)}$
$I=\int \frac{d t}{(3 t+2)(2 t+1)}$
$I=\int \frac{d t}{(3 t+2)(2 t+1)}=\frac{A}{(3 t+2)}+\frac{B}{2 t+1}$
$1=\mathrm{A}(2 \mathrm{t}+1)+\mathrm{B}(3 \mathrm{t}+2)$
$\mathrm{t}=\frac{-1}{2} \quad 1=\mathrm{B}\left(\frac{-3}{2}+2\right) \quad 1=\mathrm{B}\left(\frac{1}{2}\right)$
$B=2$
$\mathrm{t}=\frac{-2}{3} \quad 1=\mathrm{A}\left(2 \times-\frac{2}{3}+1\right)$

$$
1=\mathrm{A}\left(-\frac{4}{3}+1\right) \Rightarrow 1=\mathrm{A}\left(\frac{-1}{3}\right)
$$

$\mathrm{A}=-3$
$I=\int\left(\frac{-3}{3 t+2}+\frac{2}{2 t+1}\right) d t$
$I=-3 \frac{\log (3 t+2)}{3}+2 \frac{\log (2 t+1)}{2}+C$
$I=\log (2 t+1)-\log (3 t+2)+C$
$I=\log \left(\frac{2 t+1}{3 t+2}\right)+C$
$I=\log \left|\frac{2 \log x+1}{3 \log x+2}\right|+C$
45. $\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x=$
(A) $2 x+\sin x+2 \sin 2 x+C$
(B) $x+2 \sin x+2 \sin 2 x+C$
(C) $x+2 \sin x+\sin 2 x+C$
(D) $2 x+\sin x+\sin 2 x+C$

Ans (C)
$I=\int \frac{\sin \frac{5 x}{2}}{\sin \frac{x}{2}} d x$
$I=\int \frac{2 \sin \frac{5 x}{2} \cos \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}} d x$
$I=\int \frac{\sin 3 x+\sin 2 x}{\sin x} d x$
$I=I=\int\left(\frac{3 \sin x-4 \sin ^{3} x+2 \sin x \cos x}{\sin x}\right) d x$
$I=\int\left(3-4 \sin ^{2} x+2 \cos x\right) d x$
$I=\int(3-2(1-\cos 2 x)+2 \cos x) d x$
$I=\int(1+2 \cos 2 x+2 \cos x) d x$
$\mathrm{I}=\mathrm{x}+\sin 2 \mathrm{x}+2 \sin \mathrm{x}+\mathrm{C}$
46. $\int_{1}^{5}(|x-3|+|1-\mathrm{x}|) \mathrm{dx}=$
(A) 12
(B) $\frac{5}{6}$
(C) 21
(D) 10

Ans (A)
$I=\int_{1}^{5}(|x-3|+|1-x|) d x$
$I=\int_{1}^{3}(3-x) d x+\int_{3}^{5}(x-3) d x+\int_{1}^{5}(x-1) d x$
$I=\left(3 x-\frac{x^{2}}{2}\right)_{1}^{3}+\left(\frac{x^{2}}{2}-3 x\right)_{3}^{5}+\left(\frac{x^{2}}{2}-x\right)_{1}^{5}$
$\mathrm{I}=\left[\left(9-\frac{9}{2}\right)-\left(3-\frac{1}{2}\right)\right]+\left[\left(\frac{25}{2}-15\right)-\left(\frac{9}{2}-9\right)\right]+\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$
$\mathrm{I}=\left[\frac{9}{2}-\frac{5}{2}\right]+\left[\frac{-5}{2}+\frac{9}{2}\right]+\left[\frac{15}{2}+\frac{1}{2}\right]$
$\mathrm{I}=\frac{4}{2}+\frac{4}{2}+\frac{16}{2}=2+2+8=12$
47. $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\frac{n}{n^{2}+3^{2}}+\ldots+\frac{1}{5 n}\right)=$
(A) $\frac{\pi}{4}$
(B) $\tan ^{-1} 3$
(C) $\tan ^{-1} 2$
(D) $\frac{\pi}{2}$

Ans (C)
$\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\frac{n}{n^{2}+3^{2}}+\ldots \frac{1}{5 n}\right]$
$=\lim _{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\ldots+\frac{n}{n^{2}+(2 n)^{2}}\right]$
$=\lim _{n \rightarrow \infty} \sum_{r=1}^{2 n} \frac{n}{n^{2}+r^{2}}$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024

$$
\begin{aligned}
& \lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=1}^{2 \mathrm{n}} \frac{1}{\mathrm{n}}\left(\frac{1}{1+\left(\frac{\mathrm{r}}{\mathrm{n}}\right)^{2}}\right) \\
& \int_{0}^{2} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\left.\tan ^{-1} \mathrm{x}\right|_{0} ^{2}=\tan ^{-1} 2-\tan ^{-1} 0=\tan ^{-1} 2
\end{aligned}
$$

48. The area of the region bounded by the line $y=3 x$ and the curve $y=x^{2}$ in sq. units is
(A) 10
(B) $\frac{9}{2}$
(C) 9
(D) 5

Ans (B)

$$
\begin{array}{ll}
y=3 x & \ldots(1) \\
y=x^{2} & \ldots(2) \tag{2}\\
3 x=x^{2} \Rightarrow x^{2}-3 x= & \Rightarrow x(x-3)=0 \\
& \Rightarrow x=0 \quad x=3
\end{array}
$$

$$
\begin{array}{rlr}
\text { Required area } & =\int_{0}^{3}\left(3 \mathrm{x}-\mathrm{x}^{2}\right) \mathrm{dx} & \begin{array}{|c}
\mathbf{N} \mathbf{c} \\
\\
\end{array}=\left(\frac{3 \mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{3}\right)_{0}^{3} \\
& =\left(\frac{3}{2} \times 9-\frac{27}{3}\right) \\
& =27\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =27\left(\frac{1}{6}\right)=\frac{27}{6}=\frac{9}{2} \text { sq units }
\end{array}
$$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
49. The area of the region bounded by the line $y=x$ and the curve $y=x^{3}$ is
(A) 0.2 sq. units
(B) 0.3 sq. units
(C) 0.4 sq. units
(D) 0.5 sq. units

Ans (D)

$$
\begin{align*}
& y=x \tag{1}\\
& y=x^{3} \tag{2}\\
& x=x^{3} \Rightarrow x^{3}-x=0 \\
&
\end{align*} \quad \ldots x(1)
$$

Required area $=2 \int_{0}^{1}\left(x-x^{3}\right) d x$

$$
\begin{aligned}
& =2\left[\frac{\mathrm{x}}{2}-\frac{\mathrm{x}^{4}}{4}\right]_{0}^{1} \\
& =2\left[\frac{1}{2}-\frac{1}{4}\right] \\
& \left.=2\left(\frac{\mathrm{~N}}{\mathrm{~N}}\right]^{2}\right)=2\left(\frac{1}{4}\right)=\frac{1}{2}
\end{aligned}
$$

50. The solution of $e^{\frac{d y}{d x}}=x+1, y(0)=3$ is
(A) $y-2=x \log x-x$
(B) $y-x-3=x \log x$
(C) $y-x-3=(x+1) \log (x+1)$
(D) $y+x-3=(x+1) \log (x+1)$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024

Ans (D)
$e^{\frac{d y}{d x}}=x+1, y(0)=3$
$\frac{d y}{d x}=\log (x+1)$
$d y=\log (x+1) d x$
Integrating on both side
$\int d y=\int \log (x+1) d x$
$y=x \log (x+1)-\int\left(\frac{x}{x+1}\right) d x$
$y=x \log (x+1)-\int\left(\frac{x+1-1}{x+1}\right) d x$
$y=x \log (x+1)-x+\log (x+1)+C$
when $x=0 y=3$ we get
$3=0 \log (0+1)-0+\log (0+1)+C$
$\mathrm{C}=3$
Here, $y=x \log (x+1)-x+\log (x+1)+3$
$y+x-3=(x+1) \log (x+1)$
51. The family of curves whose x and y intercepts of a tangent at any point are respectively double the x and y coordinates of that point is
(A) $x y=C$
(B) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{C}$
(C) $x^{2}-y^{2}=C$
(D) $\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{C}$

Ans (A)
Equation of tangent will be
$\frac{x}{2 h}+\frac{y}{2 k}=1$
$\frac{\mathrm{y}}{2 \mathrm{k}}=1-\frac{\mathrm{x}}{2 \mathrm{~h}}$
$\Rightarrow y=-\left(\frac{2 k}{2 h}\right) x+2 k$
Slope $=-\frac{k}{h}$
\therefore Family of curves at a point (h, k) on the curve, the slope of tangent is $-\frac{k}{h}$
$\frac{d y}{d x}=-\frac{y}{x}$
$\Rightarrow \frac{d y}{y}=-\frac{d x}{x}$
$\int \frac{1}{y} d x=-\int \frac{1}{x} d x$
$\Rightarrow \log \mathrm{y}+\log \mathrm{x}=\log \mathrm{c}$
$\therefore \mathrm{xy}=\mathrm{c}$
52. The vectors $\overrightarrow{\mathrm{AB}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{AC}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ are the sides of a $\Delta \mathrm{ABC}$. The length of the median through A is
(A) $\sqrt{18}$
(B) $\sqrt{72}$
(C) $\sqrt{33}$
(D) $\sqrt{288}$

Ans (C)
Let A be the origin of reference so that the position vector of
$\overrightarrow{\mathrm{AB}}=$ position vector of B
$\overrightarrow{\mathrm{AC}}=$ position vector of C
\therefore position vector of midpoint of B and C
$\overrightarrow{\mathrm{P}}=\frac{\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}}{2}$
$=4 \hat{i}-\hat{j}+4 \hat{k}$
Length $=|\overrightarrow{\mathrm{AP}}|=\sqrt{33}$
53. The volume of the parallelopiped whose co-terminous edges are $\hat{j}+\hat{k}, \hat{i}+\hat{k}$ and $\hat{i}+\hat{j}$ is
(A) 6 cu . units
(B) 2 cu . units
(C) 4 cu . units
(D) 3 cu . units

Ans (B)
Volume $=\left|\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
$\therefore \mathrm{V}=0(0-1)-1(0-1)+1(1-0)$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024

$$
=0+1+1
$$

Volume $=2$ cu. units
54. Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if
(A) $\theta=\frac{\pi}{4}$
(B) $\theta=\frac{\pi}{3}$
(C) $\theta=\frac{2 \pi}{3}$
(D) $\theta=\frac{\pi}{2}$

Ans (C)
If \vec{a} and \vec{b} are unit vectors then
$\cos \frac{\theta}{2}=\frac{|\vec{a}+\vec{b}|}{2}$

$$
=\frac{1}{2}
$$

$\frac{\theta}{2}=60^{\circ} \rightarrow \theta=120^{\circ}$
55. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and p, q, r are vectors defined by $\overrightarrow{\mathrm{p}}=\frac{\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}\end{array}\right]}, \overrightarrow{\mathrm{q}}=\frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}\end{array}\right]}, \overrightarrow{\mathrm{r}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}\end{array}\right]}$, then $(\vec{a} \times \vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \overrightarrow{\mathrm{q}}+(\overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{a}}) \cdot \vec{r}$ is
(A) 0
(B) 1
(C) 2
(D) 3

Ans (D)
Given that $\overrightarrow{\mathrm{p}}=\frac{\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}}{\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right]}, \overrightarrow{\mathrm{q}}=\frac{\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}}{\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right]}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=\frac{\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]} \\
& =(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r} \\
& =\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{r}} \\
& =\frac{\overrightarrow{\mathrm{a}} \cdot(\overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{c}})}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]}+\frac{\overrightarrow{\mathrm{b}} \cdot(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]}+\frac{\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})}{\left[\begin{array}{lll}
\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{~b}} & \overrightarrow{\mathrm{c}}
\end{array}\right]} \\
& =1+1+1 \\
& =3
\end{aligned}
$$

56. If lines $\frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}-2}{2 \mathrm{k}}=\frac{\mathrm{z}-3}{2}$ and $\frac{\mathrm{x}-1}{3 \mathrm{k}}=\frac{\mathrm{y}-5}{1}=\frac{\mathrm{z}-6}{-5}$ are mutually perpendicular, then k is equal to
(A) $-\frac{10}{7}$
(B) $-\frac{7}{10}$
(C) -10
(D) -7

Ans (A)
$\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$
If two lines are perpendicular then $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$(-3)(3 \mathrm{k})+(2 \mathrm{k})(1)+(2)(-5)=0$
$-9 \mathrm{k}+2 \mathrm{k}-10=0$
$-7 \mathrm{k}=10 \quad \therefore \mathrm{k}=-\frac{10}{7}$
57. The distance between the two planes $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is
(A) 2 units
(B) 8 units
(C) $\frac{2}{\sqrt{29}}$ units
(D) 4 units

Ans (C)
$2 x+3 y+4 z=4$
$4 x+6 y+8 z=12$
$\Rightarrow 2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=6$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
Given, two lines are parallel
$\therefore \mathrm{D}=\left|\frac{\mathrm{d}_{1}-\mathrm{d}_{2}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}\right|=\left|\frac{6-4}{\sqrt{2^{2}+3^{2}+4^{2}}}\right|=\left|\frac{2}{\sqrt{4+9+16}}\right|=\frac{2}{\sqrt{29}}$ units
58. The sine of the angle between the straight line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{4-z}{-5}$ and the plane $2 x-2 y+z=5$ is
(A) $\frac{1}{5 \sqrt{2}}$
(B) $\frac{2}{5 \sqrt{2}}$
(C) $\frac{3}{50}$
(D) $\frac{3}{\sqrt{50}}$

Ans (A)
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{4-z}{-5}$ and $2 x-2 y+z=5$
From equation of line, the direction vector $\overrightarrow{\mathrm{s}}=(l, \mathrm{~m}, \mathrm{n})=(3,4,5)$
From equation of plane, the normal vector $\overrightarrow{\mathrm{q}}=(\mathrm{A}, \mathrm{B}, \mathrm{C})=(2,-2,1)$
$\therefore \sin \theta=\frac{|\mathrm{A} l+\mathrm{Bm}+\mathrm{Cn}|}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2} \sqrt{l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}}}}$
$\sin \theta=\left|\frac{6-8+5}{\sqrt{4+4+1} \sqrt{9+16+25}}\right|$
$\Rightarrow \sin \theta=\frac{3}{3 \sqrt{50}}=\frac{1}{5 \sqrt{2}}$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
59. The equation $x y=0$ in three-dimensional space represents
(A) a pair of straight lines
(B) a plane
(C) a pair of planes at right angles
(D) a pair of parallel planes

Ans (C)
The equation $x y=0$ can be written as $y=0$ or $x=0$. There are two separate equations that represent two planes in 3-D.
The 2 planes represented by the equation $x y=0$ are perpendicular to each other. This can be seen by analyzing the equation in term of 3 coordinates x, y, z.
The equation $\mathrm{xy}=0$ implies that either $\mathrm{x}=0$ or $\mathrm{y}=0$.
This means that the 2 planes are parallel to the z-axis, and then intersect it at right angle.

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024
60. The plane containing the point $(3,2,0)$ and the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$ is
(A) $x-y+z=1$
(B) $x+y+z=5$
(C) $x+2 y-z=1$
(D) $2 x-y+z=5$

Ans (A)
dr's of line : 1, 5, 4
dr's of normal to the plane
(A) $1,-1,1$
(B) $1,1,1$
(C) $1,2,-1$
(D) $2,-1,1$

Note:

Not in the II year prescribed syllabus of PU Board for the academic year 2023-2024

Plane contains line
\Rightarrow line is perpendicular to normal
By observation (A) satisfies

